
Java Interface For the

Trajectory Synthesizer

DANISH VAID

UNIVERSITIES SPACE RESEARCH ASSOCIATION

SEPTEMBER 4TH, 2015

What Is the Trajectory Synthesizer (TS)?

Used for CTAS to generate trajectories for:

• Scheduling

• Conflict Prediction/Resolution

Generates Trajectories from input files

Written and currently accessible in C/C++

Task and Motivation

Create a JAVA interface to access the TS

Allow JAVA Research Software Platforms (ex.

ACES, FACET, etc) to use the TS as an

alternative Trajectory Generator

Research approaches for JAVA to access C++

Task Stages

 Stage 1: Research different tools/library

 Stage 2: Test research results, learn, and determine best option

 Stage 3: Initial prototyping

− Sub – Stage 3.1: Pass TsInput file name and process

− Sub – Stage 3.2: Protoype different data structure types

 Stage 4: Design and implement

Create TsInput Java Object and pass it into C++ TS

− Sub – Stage 4.1: TS Class to Struct conversion

− Sub – Stage 4.2: Java (JNA) Declaration and Linking

− Sub – Stage 4.3: Struct to Class Constructor

− Sub – Stage 4.4: Return results to Java side

Stage 1: Possible Libraries/Tools

 Google Protocol Buffers (GPB)

 BridJ

 Java Native Interface (JNI)

 JavaCPP

 Java Native Access (JNA)

Performance/Speed: JNI > JavaCPP > JNA > GPB

Implementation Ease: JNA > GPB > JavaCPP/JNI

Data Flow Chart

TsBenchmark

INPUT TsInputRequest FILE

TsInputRequest OBJ

TsInput TsInputRequest(getData)

Trajectory::generateNextTrajectory(TsInput)

RETURN Trajectory::getTsOutput

JNA

JNI

GPB

BridJ

JavaCPP

C++ Application

JNI vs JNA

JNI
 Framework enables code

running in Java Virtual

Machine

 Allows Native method

access

 Mapped through (machine

generated) header file

JNA
 Community developed layover to

JNI

 Uses foreign function native interface

for dynamic invocation using

proxying

 Allows structure development and

passing

 Mapping handled automatically

during declaration

 Some reports say JNA is 10x slower

than JNI

What Is A Wrapper?

 Encapsulated the functionality of another component

 Provides a level of abstraction from underlying

application

 Acts as a “Bridge”

How Does JNA work?

 Uses proxy pattern

 Obtains proxy-ed object/methods from SO (shared object file)

 Automatically handles all run-time aspects

 Code must extend: com.sun.jna.Library

proxyCFuntion()

proxyCFuntion()

SO

CUser-

Lib.so

Stage 2: JNA Basic Example

 Compile and Execute

gcc – o libName –shared fileName.c

Javac –classpath jna.jar fileName.java

Javac –classpath jna.jar:. Filename

Create shared object

Compile .java files

Run java class

C:

JAVA:

int example1(int val)

{

return val * 2;

}

Public interface Clibrary extends Library{

public int example1(int val);

}

Clibrary clib = (Clibrary)Native.loadLibrary(“testlib”, CLibrary.class);

int newVal = clib.example1(23);

System.out.println(“example 1: “ + newVal);

Bash File Written For .SO linking and

Running

 Automated Bash file using TS shared library

 Imports JNA packages in libTS.so (shared object file)

 Compiles JAVA files and links to .so

 Runs classes

Stage 3: Develop JAVA Wrapper

Passing TsInput File Name String to TS

Application

Code

com.sun.jna

Native

The SO

Proxy

cTSLib.so

<<create>>

loadLibrary()

C++

Application

User Input String: File Name
File Name

File Name

C++

Application

TS

Software

Stage 3: Develop JAVA Wrapper

Passing TsInput File Name String to TS

Read XML File and Populate Appropriate Structure

TsBenchmark or TsInput

Create TsInput Object

TsInput Object

ensureGetSharedTS()

Generate Next Trajectory
getETASolution()

TS Output Struct

Write Out TsBenchmark File

Stage 3.2: Develop JAVA Wrapper

Protoype different data structure types

Tested Passing and returning of:

Plain old data types (int, float, double, etc)

C Strings

Arrays of PODs

Arrays of Structs

Unions

Arrays of Unions

Arrays of Structures containing Unions

Stage 4: Create TsInput Java Object

and pass it into C++ TS

Application

Code

com.sun.jna

Native

The SO

Proxy

cTSLib.so

<<create>>

loadLibrary()

C++

Application

TsInputRequestStruct: CALL

TsInputRequestStruct: OBJECT

CALL

OBJECT

cTSLib.run(OBJECT)
cTSLib.run(OBJECT)

cTSLib.run

(OBJECT)

TS Output In Struct

Stage 4: Create TsInput Java Object

and pass it into C++ TS

C++

Application

TS

Software

Struct/Class

Converter

TsInput

RequestStruct

TsInputRequest sendObj

TsInput

generateNextTrajectory(TsInput)

getETASolution()

TS Output Struct

Stage 4.1: TS Class to Struct

conversion

 TS in C++ classes to C Structs

 Created a script

Converter

Script

Class.H

TsInput.H

ClassStruct.h

TsInputStruct.h

 File instantiation

 Regular expressions module

Stage 4.2: Java (JNA) Declaration

and Linking
 Write all structs (data structures we created) in JNA Java format

 Example:

C:

JAVA:

Struct TSInputRequestStruct{

static const std::string NAME;

TsInputHeaderStruct mHeader;

TsInputStruct mData;

};

Public static class TsInputRequestStruct extends Structure{

public static class ByValue extends TsInputRequestStruct implements Structure.ByValue{}

public static String Name;

public TsInputHeaderStruct mHeader;

public TsInputStruct mData;

}

TS Data Members Breakdown

Stage 4.3: Struct to Class Constructor

 Initializes TS established class using passed in Struct

C/C++:

Struct Defined as:
Struct TsInputRequestStruct{

static const std::string NAME;

TsInputHeaderStruct mHeader;

TsInputStruct mData;

};

Class Constructor:
TsInputRequest structToClass(TsInputRequestStruct inp){

return TsInputRequest():

NAME(inp.NAME)

mHeader(inp.mHeader)

mData(inp.mData);

}

Current Progress

 Stage 1: Research different tools/library

 Stage 2: Test research results, learn, and determine best option

 Stage 3: Initial prototyping

− Sub – Stage 3.1: Pass TsInput file name and process

− Sub – Stage 3.2: Protoype different data structure types

 Stage 4: Design and implement chosen option

Create TsInput Java Object and pass it into C++ TS and return results

− Sub – Stage 4.1: TS Class to Struct conversion

− Sub – Stage 4.2: Java Declaration and Linking

− Sub – Stage 4.3: Struct to Class Constructor

− Sub – Stage 4.4: Return results to Java side

Code Maintenance

 Stages to follow through for any changes to data structures

− Sub – Stage 4.1: TS Class to Struct conversion

− Sub – Stage 4.2: Java Declaration and Linking

− Sub – Stage 4.3: Struct to Class Constructon

Application

Code
cTSLib.so

C++

Application

TS

Software

Struct/Class

Converter

What Did I Learn?

 Scripting

 Data Member Management

 JNA

 Makefiles

 Creating/Using SO

 Linux tools and GIT

 Documentation, Documentation, Documentation!

 Professional/Research Environment

 Professional Etiquette

THANK YOU FOR YOUR TIME

danishvaid@umail.ucsb.edu

QUESTIONS?

Thanks to:
Michael

Gilbert

Charles

Lingmei

Saugata

