

Universities Space Research Association
Summer 2015

JAVA INTERFACE FOR THE
TRAJECOTRY SYNTHESIZER
Danish Vaid

 Vaid 1

Table of Contents
What is the Trajectory Synthesizer (TS)? .. 2

Task and Motivation ... 2

Task Stages .. 2

Stage 1: Possible Tools/Libraries ... 2

Google Protocol Buffers (GPB) .. 2

BridJ ... 3

Java Native Interface (JNI) .. 3

JavaCPP ... 3

Java Native Access (JNA) ... 4

Summary of Possibilities ... 4

Data Flow Chart .. 4

JNI vs JNA .. 5

What is a wrapper? ... 5

How does JNA work? .. 6

Stage 2: JNA Basic Example ... 6

Bash File Written for .so Linking and Running .. 7

Stage 3: Develop Java Wrapper Passing TsInput File Name String to TS .. 7

Stage 3.2: Prototype Different Data Structure Types ... 8

Stage 4: Create TsInput Java Object and Pass it into C++ TS .. 9

Stage 4.1: TS Class to Struct Conversion ... 10

Stage 4.2: Java (JNA) Declaration and Linking .. 11

Stage 4.3: Structs to Class Constructor ... 11

Current Progress ... 12

Completed ... 12

Still Needs to Be Done ... 12

Code Maintenance. ... 12

 Vaid 2

What is the Trajectory Synthesizer (TS)?
TS is a generation software written and used for CTAS to generate trajectories for

scheduling and conflict prediction/resolution. TS operates by taking in input files and generating

trajectories from those, currently in C/C++.

Task and Motivation
My main task was to research and develop approaches for Java to access C++.

My motivation for this task was to create a Java interface to access the TS software that

would allow Java research software platforms (ex. ACES, FACET, etc) to use the TS as an

alternative trajectory generator.

Task Stages
My Task stages were as follows:

Stage 1: Research different tools/libraries

Stage 2: Test research results, learn, and determine best option

Stage 3: Inital prototyping

Sub - Stage 3.1: Pass TsInput file name and process

Sub - Stage 3.2: Prototype different data structure types

Stage 4: Design and Implementation

(Create TsInput Java Object and pass it into C++ TS)

Sub - Stage 4.1: TS Class to Struct conversion

Sub - Stage 4.2: Java (JNA) declaration and linking

Sub - Stage 4.3: Struct to Class Constructor

Sub - Stage 4.4: Return results to Java side

Stage 1: Possible Tools/Libraries
 I looked into 5 main interface libraries for my project: Google Protocol Buffers (GPB),

BridJ, Java Native Interface (JNI), JavaCPP, Java Native Access (JNA).

Google Protocol Buffers (GPB)
 Google Protocol Buffers are a language-neutral, platform-neutral extensible mechanism

for serializing structured data, just as XML serialization but smaller, implementation-aly faster,

and simpler.

 It works off of you (the user) defining how you want your data to be structured, then you

write that structure and Google’s “proto-buff” language and use that special generated source

 Vaid 3

code to easily write and read your structured data to and from a variety of data streams and using

a variety of language.

 I chose not to follow this choice because it would be slow, working off of XML type

serialization and deserialization, it would require hand maintenance of 4 separate layers of

connections (source code, proto-buff language, and the constructors and de-constructors for

sending to and from the buffer socket). These and the fact that GPB serialization is in binary wire

format that is not self-describing (meaning without an external specification in the listening

socket that stream would be worthless) lead me to not use GPB.

BridJ
 BridJ is a JNA inspired layover to JNI meant to be a fast and very usable interface

between Java and C++. In its current state it provides limited support for C++ classes and

subclasses (inheritance inclusive), however the project page states their main goal is to provide

complete support.

 This would have been the easiest and best choice to use for our project, however it is

mainly theoretical at this point and their documentation is incomplete at best. This project is

widely untested and I did not find much support for it. These would all make maintenance too

difficult and this path had not guarantee of working since there were no cases of it ever being

used to wrap something as extensive as TS.

Java Native Interface (JNI)
 Java Native Interface (JNI) is a programming framework that enables Java code running

in JVM to call and be called by native applications in C/C++. JNI enables programmers to write

native methods to handle situations when an application cannot be written entirely in the Java

programming language, e.g. when the standard Java class library does not support the platform-

specific features or program library.

 JNI requires a specific, convoluted, syntax on the C side to use the native function, you

must use the framework’s header generator to manually create header links and then declare the

java code. Upon this, one of the biggest disadvantage for JNI was that it does not support class or

struct passing, meaning that all of the data of a TS object would have to be destructed to

primitive types and passed in, either one-by-one or through arrays (both ways being inefficient

and horrible implementations).

JavaCPP
 JavaCPP is a JNI complement built to make C++ code available to Java without having to

constantly re-type the overhead command that are demanding. It provides a quick way to call

existing native libraries, by exploiting the syntactic and semantic similarities between Java and

C++.

 Vaid 4

 This option really only makes the syntax a bit easier when compared to JNI, it does not

really solve anything else and would still pose many of the same issues to us that JNI posses.

Java Native Access (JNA)
 Java Native Access (JNA) is a community developed library that provides Java programs

easy access to native shared libraries without using JNI. It uses foreign function interfaced

libraries to dynamically invoke native code. Basically, it uses native functions allowing code to

load a library by n ame and retrieve a pointer to a function/struct/C object.

 For this method the developer uses a Java interface to describe funtions and structures in

the target native libraries and JNA handles the linking/mapping automatically.

Summary of Possibilities
 At this point in my project JNI and JNA were the top most contestants for my tools to

write this interface. The summary of all of the above mentioned tools ease and performance is;

Implementation Ease: JNA > GPB > JavaCPP/JNI

Performance/Speed: JNI > JavaCPP > JNA > GPB

Data Flow Chart

 Vaid 5

 The chart above displays my initial plan for the interface. My chosen method of communication

would access a runner function that would call my C++ application.

 My C++ application would start by creating a TsBenchmark instance, taking the inputted file and

parsing it to populate a TsInputRequset object that would then be used to generate and return a trajectory.

JNI vs JNA
 Having written my C++ application, my next step was to pick my chosen method of

interface from my top 2 contenders: JNI and JNA. Their differences are shown below:

JNI JNA

Framework enables code running in JVM to

access C/C++ code

Community developed layover to JNI

Allows Native Method access Uses foreign function native interface for

dynamic invocation using proxying

Mapped through (machine generated) header

file

Mapping handled automatically during

declaration

Does not support custom object passing Allow C structure development and passing

Runs in native JVM Requires running through JNA in JVM

 (. . . jna.jar:. filename)

 Some reports say JNA is 10x slower than JNI

at large matrix data structures

 This comparison lead me to choose JNA over JNI because even though JNI is faster and

runs in the native JVM, JNA handles mapping and all run-time aspects by itself, allows struct

passing, and is easier to implement and maintain.

What is a wrapper?
 A wrapper is an interface method that encapsulates the functionality of another

component. It is designed to provide a level of abstraction from underlying application.

 I like to think of a wrapper acting as a bridge. As if you have the Java environment on

one side of a river and the C/C++ side of the other side of the river. The wrapper acts as a

connection between the two that allows stuff to go back and forth between the two environments.

 Vaid 6

How does JNA work?

JNA works off of a proxy pattern, a software design pattern that is a class functioning as

an interface to something else. The proxy design pattern allows you to provide an interface to

other objects by creating a wrapper class as the proxy. The JNA obtains the proxy-ed object and

methods from SO (shared object file). JNA makes proxy linking easier by automatically handles

all run-time aspects. The only caveat requirement is that the code must extend:

com.sun.jna.Library.

Stage 2: JNA Basic Example

 Vaid 7

gcc – o libName –shared fileName.c Create shared Object

Javac –classpath jna.jar fileName.java Compile .java files

Javac –classpath jna.jar:. filename Run Java Classes

The diagram above shows an example C code function and its corresponding Java (JNA)

declaration. The three steps below show compilation and execution:

Bash File Written for .so Linking and Running
 I have written an automated bash file that uses the TS shared library, imports JNA

packages in libTS.so, compiles the Java files with JNA and the necessary flags and links that to

.so and then runs the classes with the JNA environment on top of JVM.

Stage 3: Develop Java Wrapper Passing TsInput File Name String to TS

This is the Java side of my initial JNA wrapper milestone. This wrapper implementation

takes in a filename (location) as a string input in the Java side and passes that to the C side. This

is shown in the graph above.

 Vaid 8

 The application begins by loading a dynamic library up using JNA that creates the SO

proxy. Then the application sends the user inputted file name to the SO proxy that then forwards

the string and function call to the shared object library that then invokes the function call in the

C/C++ side with the string that has been passed through.

 The diagram above shows the C/C++ application of my initial wrapper. This side of the

wrapper does all of the hard lifting at this stage. It takes in a file name, loads the file and parses it

to populate the appropriate structure and get that return. It then creates a TsInput Object from

that returned structure and using that object generates the trajectory. Once it gets the trajectory

back it writes out a TsBenchmark XML file.

Stage 3.2: Prototype Different Data Structure Types
 In this stage I tested and implemented many different data structures to see what JNA

could handle and how to implement those. I tried and JNA successfully handled the passing and

returning of:

 Plain old data types (int, float, double, etc.)

 C Strings

 Arrays of PODs

 Arrays of Structs

 Unions

 Arrays of Unions

 Arrays of Structures containing Unions

 Vaid 9

Stage 4: Create TsInput Java Object and Pass it into C++ TS

 This is the Java side of the main goal of my project. To create a TS object in the Java

side, populate it, and pass it through to the C++ TS application. This application starts by loading

up the dynamic library which causes JNA to create the SO proxy link. Next I must have a

constructor call to create a TsInputRequestStruct which get forwarded from the Java application

to the SO proxy, and then to the shared object library. Which creates a linked

TsInputRequestStruct object and returns it. Next the java application send this

TsInputRequestStruct object with a call to run my C application to the SO proxy that forwards it

to the shared object library, which in turn calls the C++ application with the passed in object.

The C/C++ side of the wrapper will be explained next but as the bottom of the diagram shows,

the C/C++ application returns a TS Output In Struct.

 A main point to notice in JNA is that it only supports passing of C structs, not C++

structs or classes, so the TS data structures must be converted to C structs and then my

application will require a constructor from struct to class.

 Vaid 10

 This is the C/C++ side of the final wrapper. It starts by sending the inputted Struct

through a converter/constructor to create a appropriate TS class object. Then my application

passes that request object to the TS software to get back the TsInput; which is in turn sent to the

TS software to generate a trajectory. The result of said trajectory generation is returned and sent

back to the Java side through the shared object, which forwards it to the SO proxy, which returns

it to the Java application.

Stage 4.1: TS Class to Struct Conversion
 As mentioned above, JNA only allows passing of C structs, not C++ structs or classes, so

we must start by converting all of TS data members into C structs. This is a daunting and time

consuming task and would make maintenance unnecessarily more convoluted. However, I wrote

a script that does the conversion for you. It works off the following form:

My conversion script handles file instantiation and uses the regular expressions module

for the line-by-line logic.

Converter

Script

Class.H

TsInput.H

ClassStruct.h

TsInputStruct.h

 Vaid 11

My script’s step outline is:

1. Import necessary modules

2. Open original and temporary writing copy files

3. Compile regular expressions code

4. Set up line loop for file

5. Split away the “//” comments

6. Take away lines with function operators “()”

7. Copy data

8. Close files

9. Load up temporary file into memory

10. Get rid of all lines with pure whitespace and copy to final file

11. Close final output fiel and temp file

12. Delete temp file

13. Print success and end of script

Stage 4.2: Java (JNA) Declaration and Linking

 This part of my project was to write all of TS’s data member (struct version) in the JNA-

Java declaration for JNA linking and proxy creation. Basically you have to write all of the structs

(we created in the last step) in JNA’s format for Java.

Example:

Stage 4.3: Structs to Class Constructor
 Since TS operates off of its defined classes that we turned into structs for passing through

to our C/C++ application, we now have to have a constructor to create a class version of that

object for the passed in struct. This should be one function that handles all of the depend data

members. An example of a struct constructor/converter is:

 Vaid 12

Current Progress

Completed
 All of Stage 1, Stage 2, and Stage 3 have been completed; Sub - Stage 4.1 has also been

completed. We know the tool we want to use, JNA, it has been using for an initial wrapper, its

been tested for all data types, and we have completed designing the final wrapper. I ran my

conversion script to change TS classes into C struct data members. However, I have run out of

time and have not been able to finish the rest.

Still Needs to Be Done
 There are still TS data members in struct that needs to be declared and defined in Java

using JNA syntax. After that, the struct to class constructor/converter must be written so that TS

can accept our input type. And lasted, the wrapped must be tested in its entirety for returned

results to java side and be de-bugged completely.

Code Maintenance.
 The stages to be re-followed for any code changed/maintenance are Sub – Stages 4.1 to

4.3. Any changed in one of the layer boxes below must be reflected in the others to maintain the

correct linking and usage.

